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1. Selecting a Unit Rate 

Problem 
Given a nine year history of unit rates, make a selection. The historical rates were very 
volatile year-to-year: 
 

Year Unit Rate  
1990 2.863  
1991 4.374  
1992 0.786  
1993 7.047  
1994 2.775  
1995 20.712  
1996 15.725  
1997 2.313  
1998 10.939  

Average 8.171  
 

Solution 
Straightforward application of the bootstrap to determine a confidence interval around the 
mean.  

Poor Person's Bootstrap in Excel 
If n original data items are in a range starting at A1, use  
 

=offset(A1,n*rand(),0) 
 

in n cells to resample. Then use a "what-if" table (Alt data/table) with a blank-cell as 
column input and the required number of rows to automatically iterate the resample. Can 
use Excel to get histograms and percentiles. Percentiles from 10,000 replications are 
shown below. 
 

Percentile Unit Rate  
45 7.18  
50 7.44  
55 7.72  
65 8.29  
75 8.93  
85 9.71  
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Rich Person's Bootstrap in Matlab 
Here is a Matlab program to do the same bootstrap, produce percentiles and the 
histogram shown in Figure 1. 
 
function pctiles = XXXXBootstrap() 
 
lossRate = [2.863  
4.374  
0.786  
7.047  
2.775  
20.712  
15.725  
2.313  
10.939]; 
 
% 10000 replications 
bs = lossRate(1+floor(9*rand(10000,9))); 
 
% compute average over 9 years 
bs = sum(bs,2)/9; 
 
% output percentiles 
pctiles = [(50:100:10000)' bs(100:100:10000)]; 
 
% compute histogram 
hist(bs,30) 
title('Histogram for XXXX loss cost') 
 
 

Comment 
I used this method in pricing an account to help determine a comfort with the selected 
unit rate. We wrote the account. 
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Figure 1: Histogram for Unit Rates 
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2. Selecting a Coefficient of Variation and Pricing Excess 
Programs with Annual Aggregate Deductibles 

Problem 
Price an excess reinsurance contract with an annual aggregate deductible (AAD). 
Requires a distribution for the aggregate excess losses. Key unknown is the coefficient of 
variation (CV) of aggregate losses. (Standard practice is to use a lognormal; the mean is 
the underlying loss pick, so the CV or variance is the only other unknown.) 

Approach 
In order to investigate the range of possible CV’s Frank Bilotti of CNA Re used a 
bootstrap analysis. This work was completed in Excel and is shown on the next three 
pages. The underlying dataset was sampled from a reasonable lognormal to give 10 years 
of loss experience. These losses were then used to perform a bootstrap analysis. Frank 
computed 
 
 The mean loss before application of the AAD 
 The CV of the ten resampled losses 
 The mean loss after the application of the AAD 
 A modeled mean loss after the AAD, derived from a lognormal distribution fit to each 

resample. 

Results 
Happily the actual mean (of the underlying lognormal used to generate the original 
sample) lay in the 90th percentile of the bootstrap for underlying losses. The indicated 
range of CVs was very large with a 90% confidence interval of [0.376, 0.835] compared 
to the actual CV of 0.795. The results from the direct bootstrap and the lognormal fit 
model were reasonably close.  
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Bootstrap Method to Form Confidence Intervals for Excess Loss Pure Premiums  
 

Variables Used
Bootstrap Iterations 1,000               
Annual Aggregate Deductible 750,000           
Years of Experience 10

On Level Experience
Actual after AAD

Layer Loss Simulation after AAD Simulation
1998 2,044,243        130,571           1,294,243        -                   
1997 1,242,872        1,242,872        492,872           492,872           
1996 1,904,337        2,753,167        1,154,337        2,003,167        
1995 1,156,301        1,223,685        406,301           473,685           
1994 803,683           2,753,167        53,683             2,003,167        
1993 1,223,685        1,904,337        473,685           1,154,337        
1992 2,753,167        1,242,872        2,003,167        492,872           
1991 339,852           2,252,254        -                   1,502,254        
1990 2,252,254        2,252,254        1,502,254        1,502,254        
1989 130,571           1,904,337        -                   1,154,337        

Average 1,385,097        1,765,952        738,054           1,077,895        

Loss Before AAD
Generating Simulated Fit LogNorm
LogNorm Stats Stats

Mean 1,029,929        1,385,097        1,385,097        
StDev 818,982           845,294           845,294           
CV 79.5% 61.0% 61.0%
Skew 2.888 0.071 2.058
EPP 406,863           738,054           674,190           
95% CI 2,549,473        2,527,756        2,983,130        
5% CI 254,894           224,747           468,592           
E[X^2] 1.73E+12 2.63E+12 2.63E+12
E[X^3] 4.75E+18 5.36E+18 6.87E+18
E[X^4] 2.13E+25 1.21E+25 2.46E+25
mu 13.600 13.983
sigma 0.700 0.563
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Bootstrap Iterations
Before AAD After AAD   

Lognormal
Mean CV EPP EPP
1,765,952       46.1% 1,077,895    1,020,775    

1 688,818          17.5% 144,734       132,218       
2 717,523          25.2% 220,465       169,222       
3 744,463          26.1% 220,626       189,077       
4 767,046          26.4% 250,595       217,916       
5 775,432          28.0% 256,248       228,111       
6 778,366          28.0% 262,908       230,805       
7 780,451          28.2% 268,824       234,474       
8 783,678          28.4% 270,160       239,762       
9 786,905          29.1% 274,032       240,245       

10 794,158          29.7% 276,396       240,543       
11 800,332          30.2% 281,445       243,557       
12 804,040          30.6% 282,852       246,593       
13 813,628          30.8% 284,734       247,924       
14 818,117          31.1% 293,003       248,765       
15 826,653          31.7% 296,225       253,137       
16 826,937          32.0% 300,637       254,375       
17 830,824          32.2% 300,971       258,225       
18 832,996          32.2% 301,537       258,773       
19 837,270          32.3% 306,826       261,007       
20 839,083          32.8% 308,436       265,362       
21 842,887          32.8% 314,113       266,526       
22 844,721          33.5% 318,396       266,753       
23 845,276          34.5% 319,447       276,440       
24 855,014          34.5% 322,931       279,495       
25 862,096          34.7% 326,734       280,494       
26 863,532          34.7% 328,813       282,381       
27 869,833          34.8% 331,016       282,846       
28 872,607          35.0% 331,487       287,136       
29 874,251          35.1% 334,305       290,494       
30 878,276          35.2% 336,855       291,037       
31 879,784          35.5% 345,512       291,823       
32 883,232          35.5% 346,847       291,876       
33 889,597          35.5% 351,455       296,912       
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Bootstrap Confidence Intervals
Losses in Layer Before AAD EPP After AAD

Mean of CV of LogNormal fit
Losses in Layer losses in layer Bootstrap to Mean/CV

Percentile Before AAD Before AAD EPP of Bootstrap
0.99 1,953,819 97.5% 1,244,833 1,204,945
0.95 1,800,870 83.5% 1,085,264 1,053,656
0.5 1,404,235 57.9% 742,052 684,656
0.05 976,472 37.6% 385,123 341,806
0.01 800,332 30.2% 281,445 243,557

Average 1,393,704 58.8% 745,176 690,476
Stdev 250,541 14.4% 209,445 212,773

CV 17.98% 24.46% 28.1% 30.8%
Skew -12.1% 43.4% 1.5% 12.2%
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3. A Bayesian-Bootstrap method for updating ultimate loss 
distributions  

Problem 
Given a prior ultimate loss distribution for a book of business and a paid or incurred loss 
development triangle, how should the distribution be updated to reflect incurred-to-date 
or paid-to-date loss information? 

Solution 
Apply bootstrap resampling to the development triangle to generate a distribution for 
factors-to-ultimate. Smooth using a low-pass filter, or other technique. Combine with the 
prior ultimate distribution to produce a bivariate distribution of factors-to-ultimate and 
ultimate loss. Transform the bivariate distribution to a distribution of observed loss at nth 
report and ultimate loss, using the fact that the observed loss times the factor-to-ultimate 
equals the ultimate loss. Then use standard Bayesian techniques to produce a posterior 
ultimate distribution given the observed loss. 

Implementation 
This is a very down to earth and practical method which is easy to implement on a 
computer and which gives reasonable results. It has minimal data input requirements: a 
loss development triangle and a reasonable prior ultimate. It can be used in DFA, in 
setting confidence intervals for reserves, and in profitability analysis. 
 
Figures 2, 3 and 4 are from a Matlab tool I have built to implement the method. I am 
currently working on a Visual C++ (free/cheap) version of the model with 3-d graphics. 
The underlying data is paid losses for WC at 12 and 24 months---note the very high 
factors-to-ultimate! The six graphs in Figures 2 and 3 show the following. 
 
 Top left: distribution of factor-to-ultimate obtained by applying bootstrap method to 

input triangle (spiky line) and a smoothing of the same distribution (bold line). 
 Middle left: contour plot of the bivariate density of ultimate loss and factor-to-

ultimate. Figure 3 assumes the two are independent. Figure 2 uses a Frank copula to 
induce correlation with a Kendall’s tau of 0.25, which explains the northeast slant of 
the contours. (See Wang's PCAS paper on Aggregating Correlated Distributions for 
more details on copulas.)  The observed loss corresponds to the diagonal dashed line.  

 Lower left: prior ultimate (thin line) and posterior ultimate given observed loss (thick 
line). The indicated means are also shown. 

 Upper right: derived distribution of the observed loss at 12 and 24 months. 
 Middle right: transformed bivariate distribution, showing the density of loss at 12 and 

24 months (Figures 2 and 3 respv.) vs. ultimate loss. Note the scales are different and 
that the dashed line has slope 1. Also the x-axis is on a much larger scale than for the 
other contour plot which explains why the contours appear patchy. There is more y-
axis resolution than x-axis resolution. 

 Lower right: comparison of the chain-ladder, B.F. and mean of posterior distribution 
(bold) estimates of ultimate losses for different observed losses (x-axis), showing that 
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the latter provides a very nice balance between the two more traditional methods. 
(Clearer on Figure 3.) 

 
Figure 4 shows the underlying loss development triangle and some of the other user 
inputs to the model. 

Next Steps 
This model is still under development. I hope to roll out a practical version of the model 
at CNA Re to produce confidence intervals around profitability estimates, which will be 
used as part of results analysis. I will also be talking about the model at the CAS DFA 
Seminar in Chicago.  
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Figure 2: Bayesian bootstrap, first evaluation period 
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Figure 3: Bayesian bootstrap, second evaluation period
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 Figure 4: Bayesian Bootstap, underlying options 



 -14- 

4. Pricing Weather Derivatives 

Problem 
Price a weather derivative product. Weather derivatives are typically options on a 
Heating Degree Day (winter) or Cooling Degree Day (summer) index. A Cooling Degree 
Day is  

 
CDD = max(daily temperature–65oF,0). 

 
The temperature can be any agreed measure such as daily max, noon temperature or 
average temperature. The options are based on the sum of CDDs over a specified contract 
period. Each CDD is given a nominal value. For example, the contract may pay $5,000 
for each CDD in excess of 350CDDs over a one month period. If the average high 
temperature is about 75 oF then 300CDDs would be expected. CDD options can be used 
to hedge electricity generation costs. Clearly the distribution of CDDs is needed to price 
the product. 

Data 
Underlying data on weather is widely available on the Web. My underlying data source 
was a 20 year daily temperature time series. I approached the problem somewhat 
academically and assumed that the past is an indicator of the future. Actual players in the 
market combine similar statistical models with forecasts and opinions about global 
warming. (I have heard the less sophisticated use Black-Scholes!) 
 

Model 
The model broke the problem into several stages. 
 Pick out the seasonal effect by smoothing the daily time series using a low-pass filter. 

This produces the sinusoidal graph shown in the top panel of Figure 5. The contract 
period is shown in bold. 

 The year-to-year variability in sinusoids is shown in the middle panel, which 
collapses all the sine waves into one year. 

 Fit a linear model to the original time-series minus the seasonal sinusoid. The model 
was simply today’s temperature on yesterday’s. The model fit initially looked 
extremely good, though on closer inspection the errors were not quite normal, slightly 
heteroscedastic (more variable in the spring) and they had a slight seasonal 
component. 

 To produce the distribution of CDDs first sample from the annual sinusoids. Then 
sample separately from the linear model residuals for the correct time period and use 
the linear model to reconstruct the difference between the daily temperature and the 
sinusoid. Combine to produce a sample of the daily temperature over the required 
time period.  

 Produce histograms and statistics as required from the resulting CDD distribution. In 
the lower panel of Figure 5, the tick marks show the historical observations.  

This example shows how it is possible to combine statistical models with the bootstrap in 
order to retain correlations in the original data. 
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 Figure 5: Weather Derivatives Pricing Tool 


	AIB Bootstrap Workshop  Four Actuarial Applications of the Bootstrap
	₪
	Stephen Mildenhall CNA Re  May 26, 1999
	Contents:
	1. Selecting a Unit Rate
	2. Selecting a Coefficient of Variation and Pricing Excess Programs with Annual Aggregate Deductibles
	3. A Bayesian-Bootstrap method for updating ultimate loss distributions
	4. Pricing Weather Derivatives

	1.  Selecting a Unit Rate
	Problem
	Solution
	Poor Person's Bootstrap in Excel
	Rich Person's Bootstrap in Matlab
	Comment

	Unit Rate
	Unit Rate
	2. Selecting a Coefficient of Variation and Pricing Excess Programs with Annual Aggregate Deductibles
	Problem
	Approach
	Results

	3. A Bayesian-Bootstrap method for updating ultimate loss distributions
	Problem
	Solution
	Implementation
	Next Steps

	4. Pricing Weather Derivatives
	Problem
	Data
	Model


