# AIB Bootstrap Workshop

# Four Actuarial Applications of the Bootstrap

J

# Stephen Mildenhall CNA Re

May 26, 1999

#### Contents:

- 1. Selecting a Unit Rate
- 2. Selecting a Coefficient of Variation and Pricing Excess Programs with Annual Aggregate Deductibles
- 3. A Bayesian-Bootstrap method for updating ultimate loss distributions
- 4. Pricing Weather Derivatives

312 876 5295 stephen.mildenhall@cna.com

# 1. Selecting a Unit Rate

#### Problem

Given a nine year history of unit rates, make a selection. The historical rates were very volatile year-to-year:

| Year    | Unit Rate |
|---------|-----------|
| 1990    | 2.863     |
| 1991    | 4.374     |
| 1992    | 0.786     |
| 1993    | 7.047     |
| 1994    | 2.775     |
| 1995    | 20.712    |
| 1996    | 15.725    |
| 1997    | 2.313     |
| 1998    | 10.939    |
| Average | 8.171     |

#### Solution

Straightforward application of the bootstrap to determine a confidence interval around the mean.

#### Poor Person's Bootstrap in Excel

If *n* original data items are in a range starting at A1, use

in *n* cells to resample. Then use a "what-if" table (Alt data/table) with a blank-cell as column input and the required number of rows to automatically iterate the resample. Can use Excel to get histograms and percentiles. Percentiles from 10,000 replications are shown below.

| Percentile | Unit Rate |
|------------|-----------|
| 45         | 7.18      |
| 50         | 7.44      |
| 55         | 7.72      |
| 65         | 8.29      |
| 75         | 8.93      |
| 85         | 9.71      |

#### Rich Person's Bootstrap in Matlab

Here is a Matlab program to do the same bootstrap, produce percentiles and the histogram shown in Figure 1.

```
function pctiles = XXXXBootstrap()
lossRate = [2.863]
4.374
0.786
7.047
2.775
20.712
15.725
2.313
10.939];
% 10000 replications
bs = lossRate(1+floor(9*rand(10000,9)));
% compute average over 9 years
bs = sum(bs, 2)/9;
% output percentiles
pctiles = [(50:100:10000)' bs(100:100:10000)];
% compute histogram
hist(bs,30)
title('Histogram for XXXX loss cost')
```

#### Comment

I used this method in pricing an account to help determine a comfort with the selected unit rate. We wrote the account.

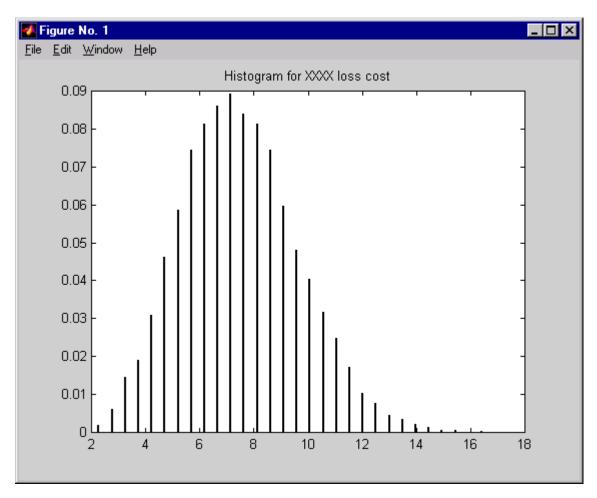


Figure 1: Histogram for Unit Rates

# 2. Selecting a Coefficient of Variation and Pricing Excess Programs with Annual Aggregate Deductibles

#### Problem

Price an excess reinsurance contract with an annual aggregate deductible (AAD). Requires a distribution for the aggregate excess losses. Key unknown is the coefficient of variation (CV) of aggregate losses. (Standard practice is to use a lognormal; the mean is the underlying loss pick, so the CV or variance is the only other unknown.)

#### Approach

In order to investigate the range of possible CV's Frank Bilotti of CNA Re used a bootstrap analysis. This work was completed in Excel and is shown on the next three pages. The underlying dataset was sampled from a reasonable lognormal to give 10 years of loss experience. These losses were then used to perform a bootstrap analysis. Frank computed

- The mean loss before application of the AAD
- The CV of the ten resampled losses
- The mean loss after the application of the AAD
- A modeled mean loss after the AAD, derived from a lognormal distribution fit to each resample.

#### Results

Happily the actual mean (of the underlying lognormal used to generate the original sample) lay in the 90<sup>th</sup> percentile of the bootstrap for underlying losses. The indicated range of CVs was very large with a 90% confidence interval of [0.376, 0.835] compared to the actual CV of 0.795. The results from the direct bootstrap and the lognormal fit model were reasonably close.

| Bootstrap Method to Form  | <b>Confidence Intervals for Excess</b> | Loss Pure Premiums |
|---------------------------|----------------------------------------|--------------------|
| Bootstrup method to i onn |                                        |                    |

| Variables Used              |                  |
|-----------------------------|------------------|
| Bootstrap Iterations        | 1,000            |
| Annual Aggregate Deductible | 1,000<br>750,000 |
| Years of Experience         | 10               |

|         | 0          | n Level Experier | nce       |            |
|---------|------------|------------------|-----------|------------|
|         |            |                  | Actual    | after AAD  |
|         | Layer Loss | Simulation       | after AAD | Simulation |
| 1998    | 2,044,243  | 130,571          | 1,294,243 | -          |
| 1997    | 1,242,872  | 1,242,872        | 492,872   | 492,872    |
| 1996    | 1,904,337  | 2,753,167        | 1,154,337 | 2,003,167  |
| 1995    | 1,156,301  | 1,223,685        | 406,301   | 473,685    |
| 1994    | 803,683    | 2,753,167        | 53,683    | 2,003,167  |
| 1993    | 1,223,685  | 1,904,337        | 473,685   | 1,154,337  |
| 1992    | 2,753,167  | 1,242,872        | 2,003,167 | 492,872    |
| 1991    | 339,852    | 2,252,254        | -         | 1,502,254  |
| 1990    | 2,252,254  | 2,252,254        | 1,502,254 | 1,502,254  |
| 1989    | 130,571    | 1,904,337        | -         | 1,154,337  |
| Average | 1,385,097  | 1,765,952        | 738,054   | 1,077,895  |

|        | Loss B     | efore AAD |             |
|--------|------------|-----------|-------------|
|        | Generating | Simulated | Fit LogNorm |
|        | LogNorm    | Stats     | Stats       |
| Mean   | 1,029,929  | 1,385,097 | 1,385,097   |
| StDev  | 818,982    | 845,294   | 845,294     |
| CV     | 79.5%      | 61.0%     | 61.0%       |
| Skew   | 2.888      | 0.071     | 2.058       |
| EPP    | 406,863    | 738,054   | 674,190     |
| 95% CI | 2,549,473  | 2,527,756 | 2,983,130   |
| 5% CI  | 254,894    | 224,747   | 468,592     |
| E[X^2] | 1.73E+12   | 2.63E+12  | 2.63E+12    |
| E[X^3] | 4.75E+18   | 5.36E+18  | 6.87E+18    |
| E[X^4] | 2.13E+25   | 1.21E+25  | 2.46E+25    |
| mu     | 13.600     |           | 13.983      |
| sigma  | 0.700      |           | 0.563       |

| Bootstrap Iterations |            |           |           |           |  |  |  |  |  |
|----------------------|------------|-----------|-----------|-----------|--|--|--|--|--|
|                      | Before AAD | After AAD |           |           |  |  |  |  |  |
|                      |            |           |           | Lognormal |  |  |  |  |  |
|                      | Mean       | CV        | EPP       | EPP       |  |  |  |  |  |
|                      | 1,765,952  | 46.1%     | 1,077,895 | 1,020,775 |  |  |  |  |  |
| 1                    | 688,818    | 17.5%     | 144,734   | 132,218   |  |  |  |  |  |
| 2                    | 717,523    | 25.2%     | 220,465   | 169,222   |  |  |  |  |  |
| 3                    | 744,463    | 26.1%     | 220,626   | 189,077   |  |  |  |  |  |
| 4                    | 767,046    | 26.4%     | 250,595   | 217,916   |  |  |  |  |  |
| 5                    | 775,432    | 28.0%     | 256,248   | 228,111   |  |  |  |  |  |
| 6                    | 778,366    | 28.0%     | 262,908   | 230,805   |  |  |  |  |  |
| 7                    | 780,451    | 28.2%     | 268,824   | 234,474   |  |  |  |  |  |
| 8                    | 783,678    | 28.4%     | 270,160   | 239,762   |  |  |  |  |  |
| 9                    | 786,905    | 29.1%     | 274,032   | 240,245   |  |  |  |  |  |
| 10                   | 794,158    | 29.7%     | 276,396   | 240,543   |  |  |  |  |  |
| 11                   | 800,332    | 30.2%     | 281,445   | 243,557   |  |  |  |  |  |
| 12                   | 804,040    | 30.6%     | 282,852   | 246,593   |  |  |  |  |  |
| 13                   | 813,628    | 30.8%     | 284,734   | 247,924   |  |  |  |  |  |
| 14                   | 818,117    | 31.1%     | 293,003   | 248,765   |  |  |  |  |  |
| 15                   | 826,653    | 31.7%     | 296,225   | 253,137   |  |  |  |  |  |
| 16                   | 826,937    | 32.0%     | 300,637   | 254,375   |  |  |  |  |  |
| 17                   | 830,824    | 32.2%     | 300,971   | 258,225   |  |  |  |  |  |
| 18                   | 832,996    | 32.2%     | 301,537   | 258,773   |  |  |  |  |  |
| 19                   | 837,270    | 32.3%     | 306,826   | 261,007   |  |  |  |  |  |
| 20                   | 839,083    | 32.8%     | 308,436   | 265,362   |  |  |  |  |  |
| 21                   | 842,887    | 32.8%     | 314,113   | 266,526   |  |  |  |  |  |
| 22                   | 844,721    | 33.5%     | 318,396   | 266,753   |  |  |  |  |  |
| 23                   | 845,276    | 34.5%     | 319,447   | 276,440   |  |  |  |  |  |
| 24                   | 855,014    | 34.5%     | 322,931   | 279,495   |  |  |  |  |  |
| 25                   | 862,096    | 34.7%     | 326,734   | 280,494   |  |  |  |  |  |
| 26                   | 863,532    | 34.7%     | 328,813   | 282,381   |  |  |  |  |  |
| 27                   | 869,833    | 34.8%     | 331,016   | 282,846   |  |  |  |  |  |
| 28                   | 872,607    | 35.0%     | 331,487   | 287,136   |  |  |  |  |  |
| 29                   | 874,251    | 35.1%     | 334,305   | 290,494   |  |  |  |  |  |
| 30                   | 878,276    | 35.2%     | 336,855   | 291,037   |  |  |  |  |  |
| 31                   | 879,784    | 35.5%     | 345,512   | 291,823   |  |  |  |  |  |
| 32                   | 883,232    | 35.5%     | 346,847   | 291,876   |  |  |  |  |  |
| 33                   | 889,597    | 35.5%     | 351,455   | 296,912   |  |  |  |  |  |

|            | Bootstra        | p Confidence Int | tervals   |               |
|------------|-----------------|------------------|-----------|---------------|
|            | Losses in Laye  | er Before AAD    | EPP A     | fter AAD      |
|            | Mean of         | CV of            |           | LogNormal fit |
|            | Losses in Layer | losses in layer  | Bootstrap | to Mean/CV    |
| Percentile | Before AAD      | Before AAD       | EPP       | of Bootstrap  |
| 0.99       | 1,953,819       | 97.5%            | 1,244,833 | 1,204,945     |
| 0.95       | 1,800,870       | 83.5%            | 1,085,264 | 1,053,656     |
| 0.5        | 1,404,235       | 57.9%            | 742,052   | 684,656       |
| 0.05       | 976,472         | 37.6%            | 385,123   | 341,806       |
| 0.01       | 800,332         | 30.2%            | 281,445   | 243,557       |
| Average    | 1,393,704       | 58.8%            | 745,176   | 690,476       |
| Stdev      | 250,541         | 14.4%            | 209,445   | 212,773       |
| CV         | 17.98%          | 24.46%           | 28.1%     | 30.8%         |
| Skew       | -12.1%          | 43.4%            | 1.5%      | 12.2%         |

# 3. A Bayesian-Bootstrap method for updating ultimate loss distributions

#### Problem

Given a prior ultimate loss distribution for a book of business and a paid or incurred loss development triangle, how should the distribution be updated to reflect incurred-to-date or paid-to-date loss information?

#### Solution

Apply bootstrap resampling to the development triangle to generate a distribution for factors-to-ultimate. Smooth using a low-pass filter, or other technique. Combine with the prior ultimate distribution to produce a bivariate distribution of factors-to-ultimate and ultimate loss. Transform the bivariate distribution to a distribution of observed loss at *n*th report and ultimate loss, using the fact that the observed loss times the factor-to-ultimate equals the ultimate loss. Then use standard Bayesian techniques to produce a posterior ultimate distribution given the observed loss.

#### Implementation

This is a very down to earth and practical method which is easy to implement on a computer and which gives reasonable results. It has minimal data input requirements: a loss development triangle and a reasonable prior ultimate. It can be used in DFA, in setting confidence intervals for reserves, and in profitability analysis.

Figures 2, 3 and 4 are from a Matlab tool I have built to implement the method. I am currently working on a Visual C++ (free/cheap) version of the model with 3-d graphics. The underlying data is paid losses for WC at 12 and 24 months---note the very high factors-to-ultimate! The six graphs in Figures 2 and 3 show the following.

- Top left: distribution of factor-to-ultimate obtained by applying bootstrap method to input triangle (spiky line) and a smoothing of the same distribution (bold line).
- Middle left: contour plot of the bivariate density of ultimate loss and factor-toultimate. Figure 3 assumes the two are independent. Figure 2 uses a Frank copula to induce correlation with a Kendall's tau of 0.25, which explains the northeast slant of the contours. (See Wang's PCAS paper on Aggregating Correlated Distributions for more details on copulas.) The observed loss corresponds to the diagonal dashed line.
- Lower left: prior ultimate (thin line) and posterior ultimate given observed loss (thick line). The indicated means are also shown.
- Upper right: derived distribution of the observed loss at 12 and 24 months.
- Middle right: transformed bivariate distribution, showing the density of loss at 12 and 24 months (Figures 2 and 3 respv.) vs. ultimate loss. Note the scales are different and that the dashed line has slope 1. Also the x-axis is on a much larger scale than for the other contour plot which explains why the contours appear patchy. There is more y-axis resolution than x-axis resolution.
- Lower right: comparison of the chain-ladder, B.F. and mean of posterior distribution (bold) estimates of ultimate losses for different observed losses (*x*-axis), showing that

the latter provides a very nice balance between the two more traditional methods. (Clearer on Figure 3.)

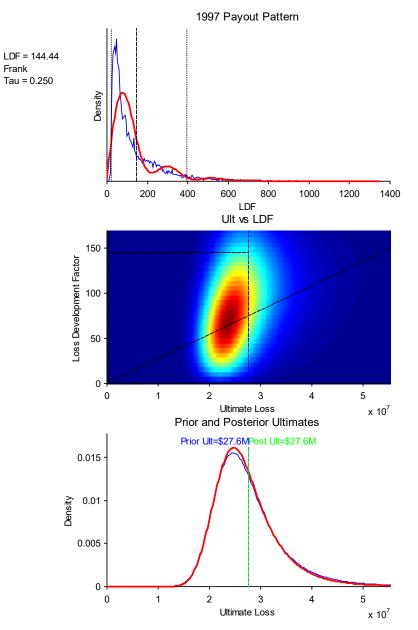
Figure 4 shows the underlying loss development triangle and some of the other user inputs to the model.

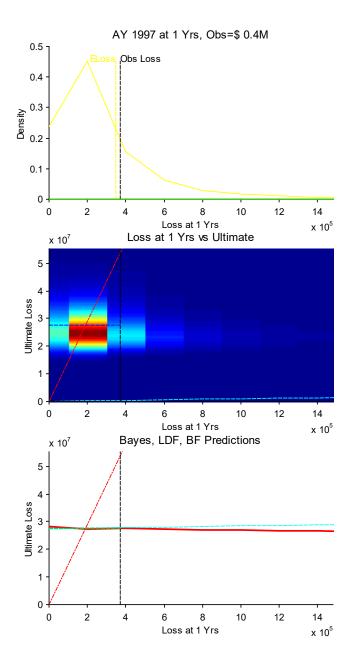
#### Next Steps

This model is still under development. I hope to roll out a practical version of the model at CNA Re to produce confidence intervals around profitability estimates, which will be used as part of results analysis. I will also be talking about the model at the CAS DFA Seminar in Chicago.

Figure 2: Bayesian bootstrap, first evaluation period



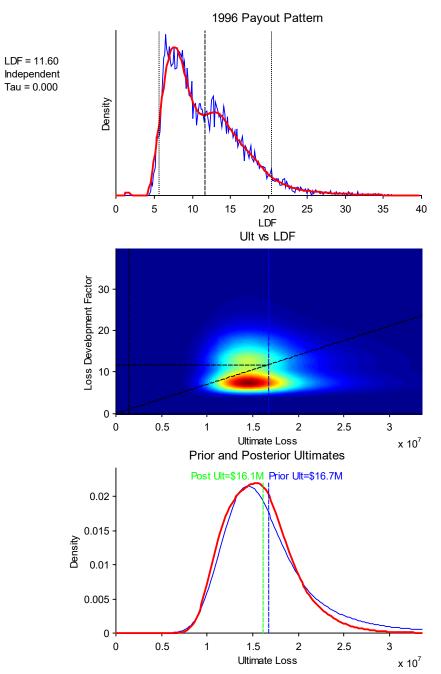


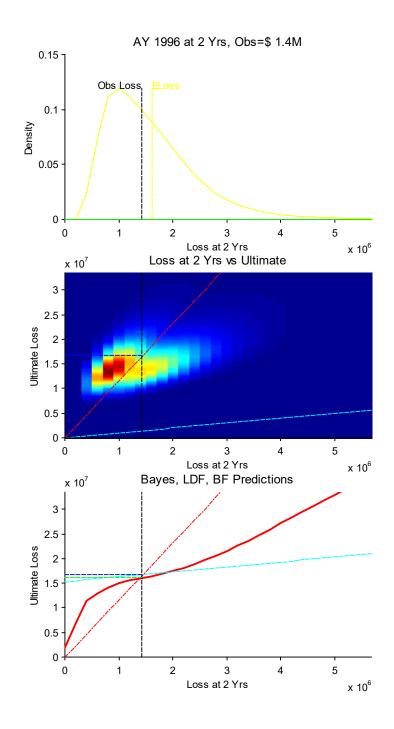


-11-

Figure 3: Bayesian bootstrap, second evaluation period







| AY     | 1/2                            | 2/3     | 3/4      | 4/5    | 5/6   | 6/7    | 7/8     | 8/9    | 9/10     | Tail  | Tail CV | Tail Mir |
|--------|--------------------------------|---------|----------|--------|-------|--------|---------|--------|----------|-------|---------|----------|
| 1988   | 20.617                         | 2.353   | 1.608    | 1.137  | 1.112 | 1.050  | 1.029   | 1.000  | 1.001    | 1.087 | 0.200   | 1.000    |
| 1989   | 14.752                         | 2.505   | 1.923    | 1.170  | 1.101 | 1.011  | 1.033   | 1.004  | 1.000    | 1.083 | 0.200   | 1.000    |
| 1990   | 15.025                         | 2.353   | 1.608    | 1.137  | 1.112 | 1.050  | 1.029   | 1.000  |          | 1.109 | 0.200   | 1.000    |
| 1991   | 5.422                          | 4.802   | 2.001    | 1.134  | 1.076 | 1.039  | 1.021   |        |          | 1.095 | 0.300   | 1.000    |
| 1992   | 34.227                         | 1.975   | 1.443    | 1.274  | 1.092 | 1.106  |         |        |          | 1.249 | 0.400   | 1.050    |
| 1993   | 5.027                          | 4.995   | 2.163    | 1.267  | 1.111 |        |         |        |          | 1.267 | 0.500   | 1.050    |
| 1994   | 6.948                          | 4.537   | 1.664    | 1.113  |       |        |         |        |          | 1.401 | 0.750   | 1.050    |
| 1995   | 3.881                          | 3.375   | 1.664    |        |       |        |         |        |          | 1.128 | 1.000   | 1.050    |
| 1996   | 6.944                          | 3.183   |          |        |       |        |         |        |          | 1.418 | 1.250   | 1.200    |
| 1997   | 3.365                          |         |          |        |       |        |         |        |          | 1.400 | 1.500   | 1.200    |
|        |                                |         |          |        |       |        |         |        |          |       |         |          |
| PP Smt | h No.                          | Sims    | Num      | Obs L  | 088   | Сори   | ila     | tau    | Post Smt |       |         |          |
| 0.05   | 100                            | 000     | 512      | 370    | 000 F | rank   | •       | 0.25   | 0.125    |       |         |          |
|        |                                |         |          |        |       |        |         |        |          |       |         |          |
| Redo F | edo Payouts Redo Both Redo All |         | o All    | % Paio | View  | Cancel | & Close |        |          |       |         |          |
| Red    | o Ults                         | Redo Po | ost Smth | Reset  | Local | LDF1   | View    | Save 8 | Close    |       |         |          |

Figure 4: Bayesian Bootstap, underlying options

#### Problem

Price a weather derivative product. Weather derivatives are typically options on a Heating Degree Day (winter) or Cooling Degree Day (summer) index. A Cooling Degree Day is

 $CDD = max(daily temperature-65^{\circ}F,0).$ 

The temperature can be any agreed measure such as daily max, noon temperature or average temperature. The options are based on the sum of CDDs over a specified contract period. Each CDD is given a nominal value. For example, the contract may pay \$5,000 for each CDD in excess of 350CDDs over a one month period. If the average high temperature is about 75 °F then 300CDDs would be expected. CDD options can be used to hedge electricity generation costs. Clearly the distribution of CDDs is needed to price the product.

#### Data

Underlying data on weather is widely available on the Web. My underlying data source was a 20 year daily temperature time series. I approached the problem somewhat academically and assumed that the past is an indicator of the future. Actual players in the market combine similar statistical models with forecasts and opinions about global warming. (I have heard the less sophisticated use Black-Scholes!)

# Model

The model broke the problem into several stages.

- Pick out the seasonal effect by smoothing the daily time series using a low-pass filter. This produces the sinusoidal graph shown in the top panel of Figure 5. The contract period is shown in bold.
- The year-to-year variability in sinusoids is shown in the middle panel, which collapses all the sine waves into one year.
- Fit a linear model to the original time-series minus the seasonal sinusoid. The model was simply today's temperature on yesterday's. The model fit initially looked extremely good, though on closer inspection the errors were not quite normal, slightly heteroscedastic (more variable in the spring) and they had a slight seasonal component.
- To produce the distribution of CDDs first sample from the annual sinusoids. Then sample separately from the linear model residuals for the correct time period and use the linear model to reconstruct the difference between the daily temperature and the sinusoid. Combine to produce a sample of the daily temperature over the required time period.
- Produce histograms and statistics as required from the resulting CDD distribution. In the lower panel of Figure 5, the tick marks show the historical observations.

This example shows how it is possible to combine statistical models with the bootstrap in order to retain correlations in the original data.

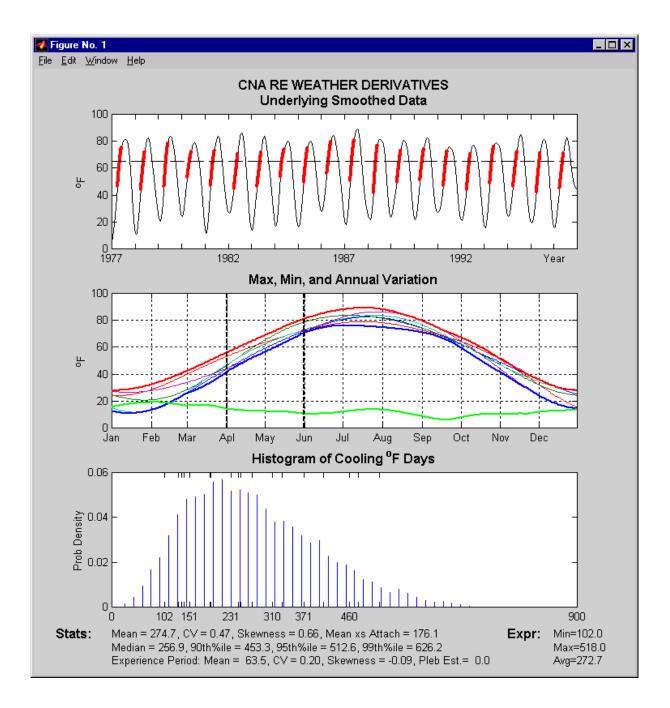


Figure 5: Weather Derivatives Pricing Tool